2. ESTIMATES: O, 0-NOTATION, STIRLING FORMULA, BIRTHDAY PARADOX AND THE BELL
CURVE

To read:
[1] 2.2.4. Pigeonhole principle. 2.2.5 The Twin Paradox
[3] 3.4. Estimates: an introduction - starting from 3.4.2. - Big Oh, little oh, 3.5.5. Estimate n!
- second proof only, 3.7. Inclusion - Exclusion.

2.1. O, o-notation.

Definition 2.1. Let f,g: Z>9 — R. We say that f is big-Oh of g and we write f(z) = O(g(x))
if there exist ng and ¢ constants such that for all n > ng, we have |f(n)| < c-|g(n)|.

)
Definition 2.2. Let f,g : Z>9 — R. We say that f is little-oh of g and we write f(z) = o(g(z)) if
lim _f(n)
n—oo g(n)

Examples: n = O(n?) and also n = o(n?), n = O(2"), n = 0o(2"), sin(n) = O(1) and sin(n) is
not o(1).

= 0.

2.2. Stirling’s formula.

Theorem 2.3. (Stirling’s formula)
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where ~ is used to indicate that the ratio of the two sides tends to 1 as n goes to oo.

2.3. Twin paradox. Suppose that there are 50 students in a math class. What are the chances
that two of them share the same birthday?

Theorem 2.4. Suppose that k < n are positive integers and each of k different people chooses
1 element from the set [n|. Their choices are uniformly random and independent. Then the

probability P = W that they have chosen k different elements can be estimated as
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Proof. We will use the following inequality for In(zx).

Lemma 2.5. For x > 0,
r—1

<lIn(z) <z -1.
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Now we estimate
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Also we find
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Applying the exponential function to both sides of our estimates we get the following:

62?5(_12;11)) < nn—1)---(n—k+1) < =R

+2+...+(k—-1))

nk

]

So the answer to the question in the beginning of this paragraph is between 96.51% and
97.93%. More precisely, the probability is about 97.03%.

Now we will estimate the binomial coefficients. The binomial coefficients in the n-th row of
the Pascal’s triangle satisfy the following inequalities:
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Therefore, the middle binomial coefficient ([n72]) is the largest in the respective row. Stirling’s

and

formula implies that the largest binomial coefficient satisfies
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Also we have the following formula describes how binomial coefficients decrease as we move away
from the middle of the Pascal’s triangle.

Proposition 2.6. Let m,t be positive integers and t < m. Then
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Proof. Here we prove the lower bound. We have
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It will be convenient for us to estimate the logarithm of this quantity.
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